ECE244 Programming Fundamentals Fall 2022

Getting Started With NetBeans

1 Introduction

An Integrated Development Environment is a graphical user interface that brings together (in-
tegrates) software development tools to make the developer’s job simpler and more efficient. It
provides a front end to a number of different tools (editor, compiler, debugger, and more) that
enables them to work better together. While it is possible to do all this individually from the
command line without an IDE, the convenience is well worth the effort to learn.

NetBeans is a free, open-source, cross-platform IDE that can be downloaded from the internet
here!. It interfaces with the GNU Compiler Collection (GCC) and GNU Debugger (GDB), which
are among the world’s most popular development tools. The version of NetBeans installed on ECF
is 8.2. The screen captures in this document are for version 7.1.2. However, there is little change
between the two versions for your usage of NetBeans.

There is extensive online documentation to help you get started with NetBeans. You may want
to look at NetBeans.org, particularly the C/C++ Getting Started Guide. There is also a YouTube
video channel for Netbeans.

Code referred to in this tutorial document is available in the examples link on the lab documen-
tation page. The examples subdirectory contains a number of folders, each of which is an example
program with source files and a Makefile to build the example program.

2 Your first project

2.1 Importing an existing project

1. In the menu, select File — New Project.

2. Select C/C++ under Categories, and “C/C++ Application from Existing Sources” under
Projects. The other options are more advanced: you can create libraries to be used and
shared by other programs, or you can create graphical user interfaces with the Qt toolkit.
For now, we are just interested in a basic C/C++ command-line (text only) application.
Click next.

3. Browse to the folder containing the existing source files. Leave “build host”?, “tool collection”,
and “configuration mode” alone for now. The tool collection should be GCC typically (unless
you are using a different compiler). Whatever tool collection you choose must be installed for
the project to compile. Click next.

4. After some time to load and parse the files, your project will appear in the editor and navigator
windows for you to start browsing or building.

5. Click the green play button (see Fig 14 if this isn’t clear) to run the program. It will compile
if necessary, and run the program if compilation is successful.

"http://www.netbeans.org
2This option allows you to build on a different computer than you use to edit the files, sometimes done on large
team projects

Page 1 of 14

http://www.netbeans.org
http://www.netbeans.org
http://netbeans.org/kb/trails/cnd.html
http://www.youtube.com/user/netbeansvideos
https://www.eecg.utoronto.ca/~yuan/teaching/ece244/tutorials/examples/
https://www.eecg.utoronto.ca/~yuan/teaching/ece244/lab-documentation.html
https://www.eecg.utoronto.ca/~yuan/teaching/ece244/lab-documentation.html

Output

| fgx (Build, Run) Makefile (Make) clean Makefile (Make)]

g++ =Wall -g hello.cpp -oc helle

MAKE SUCCESSFUL (total time: 961ms)

Figure 1: Succesfully importing and building hello.cpp

1 SER
2 -
3 using namespace std; |
4 #include <iostream> |
5
[int main () {
7
8 cout << "Hellc << endl;
9 cout << "world!" << endl;
10 return {(0}); A
11 }
12
Qutput |
| Makefile (Make) clean Makefile (Make) hello (Build, Run) hello (Run}]
H> Hello
@ world!

RUN SUCCESSFUL (total time: 90ms)
N

Figure 2: Results of running hello

Note that creating a project from existing sources requires a Makefile to provide the “recipe” for
building the project. Without the Makefile, NetBeans does not know what to do with the sources
to produce a working application. We will cover what the Make utility does in greater detail later
in the course - initially, you will be provided with the necessary Makefiles to get your labs working.

2.1.1 Example

Try importing the hello program from the labl/hello directory. The import process will automat-
ically compile, leaving output as shown below in Fig 1. By clicking on the green run button, the
program will be run giving output as shown in Fig 2.

2.2 Creating a new project

A new project can be created in a very similar way, except that you specify a new folder to create
for the project instead of the one containing files as depicted in Fig 3. The “project location” field
specifies where the project lives. Usually the project files will be placed in a folder under the one
designated (ie. if you set project folder /home/user/foo and project name bar, the files will go
in /home/user/foo/bar). Note also as you change one field, the other will automatically update.
Instead of using a provided Makefile, the IDE will generate one for you, plus optionally a starter
main source file called (by default) main.cpp. Generally, the automatically-generated Makefile will
be far more complicated than one that is custom-created by hand. On the other hand, you never
need to edit the file itself - all options can be set from within menus in the IDE (and any changes
you make to the file itself would be overwritten the next time you change a menu option).

When you create a new project “from scratch” in this way, you should add the files you need
to it using the NetBeans IDE, and NetBeans will automatically update the Makefile used to build

Page 2 of 14

Steps Project Name and Location

1. Choose Project

2. Project Name and Project Name: CppApplication_1
Location Project Location: uments /TA/ECE244_2012/Labl/new [Browse..)
Project Folder: $_20l2,I'Lablfnew,l'CppApplicalionJl
Project Makefile Name: Makefile
™ Create Main File main | C++ =
Build Host: | localhost B
Tool Collection: | Default (GNU (CNU Mac Comp... |4]

E Set as Main Project

Figure 3: Creating a new project

&
Steps Choose File Type
1. Choose File Type Ereem:
Project: ([shape v
2‘ - | p l_
Categories: Eile Types:
[C & €4+ Source File
O c++ & C++ Main File
@ C/C++ Tests oy d,}+ Header File
g Et N & C++ standard Header Filz
ssembler
& C++ Class
B8 Fortran & c++ simple Test
E shell Scripts — 'mp e. es
= Makefiles B c++ CppUnit Test
&= other & c++ CppUnit Runner
. . ol
P msinbin.
- L3
MNext = Cancel |

Figure 4: Adding a new file to a project.

the project. Use the “File — New File” command to add new C++ source (.cpp) and header (.h)
files to your project, as shown in Fig 4.

Finally, when you create a new NetBeans project it is best to set the options that will be used
to compile the project such that you receive “warnings” about any code in your program that the
compiler detects is unusual or dangerous. Use the “File — Project Properties —” menu, and set
the C++ Compiler Warning Level to “More Warnings” as shown in Fig 5.

2.3 Working with multiple projects

NetBeans has the ability to work with several projects at once. For large, complex projects this
may mean several related applications, or an application plus the libraries on which it depends.
One of the projects is always designated as the Main project (displayed in bold on the project
browser - see Fig 6). The Run, Build, and Debug commands apply to the main project only. You
can make a project main by right-clicking on it and selecting a menu option in the Projects pane
of the main window.

Page 3 of 14

@ Project Properties - shape

4

Categories:
@ General gonfiguration:|Debuq (active) u W
- @ Build)
@ ¢ Compiler - General
o C++ Compiler Include Directories
2 Fortran Compiler Preprocessor Definitions
@ Assembler Use Linker Libraries 7]
2 Linker ~ Basic Options
@ Packaging Development Mode Debug
@ Run g More Warnings
@ Debug Architecture < Default>
@ Related Projects Strip Symbols
C++ Standard = Default=

Figure 5: Select More Warnings in your C++ Compiler options so you are warned about dangerous

or unusual code by the compiler.

Projects - Labl | Files | Services | Classes |

— —
= [E"Ifgx.cpp X |

» factorial
v fgx

2 fgx - /Users/jcassidy/Documents/TA/ECE244_2012

» ﬁ‘ Important Files
> hello
» [E Labl

Figure 6: Handling multiple projects - with fgx as main project

Page 4 of 14

Projects - Labl | Files | Services Classes

: factorial
: fogx

hello

Tli'] hello - JUsers/jcassidy/src/ECE244_2012/labl/hellg|

: hello.dSYM

T Makefile

& hello

S

Er Important Files
ﬁ Makefile

Figure 7: Open a file by double-clicking. If you’re curious how the Makefile works, you can open it
up and have a look too. If you type man make at the command prompt or Google “GNU make”, it
will give you more information on the Make utility.

3 Using the NetBeans editor

To start the editor, you must select a file to edit. You can do this from either the “Files” pane or
the “Projects” pane at the top-left of the screen. The easiest is through the “Projects” pane - just
expand the listing for your current project until you find the .cpp file (example in Fig 7). Double-
click it to open. Alternatively, you can create a new file using File — New or the appropriate
button on the toolbar (hover your mouse over to figure out which - it has a plus sign).

3.1 Completion Hints

Using control-P (command-P on Mac), the editor will show a list of possible arguments for the
function call under the cursor (Fig 8. This is particularly handy if you forget what the arguments
to a function are, or what order they come in. Note that unlike the example, the function prototype
need not be in the same file. For standard library functions, this can be excellent because you don’t
even need to know where the definition is - the IDE will find it for you and tell you what you need

to know?.
7
a8 void readLinesFromFile(string filename,int nLines);
9
10 float f(float x)
11|m
14 .
15 float g(float y) Function prototype
16\ m [{...7]
19
20 int main{int ,char #* N
2|y {*° meintint acec,char ttarqw) Function argument hint
22 cout << string filename, intnLines“/ —
23 S ——————— Can't remember what
24 dLinesFromFile(); - ; . .
e readLinesFromFile(): 4 arguments?? Need a hint?

Figure 8: Forget what arguments a function takes? Put your cursor in the parentheses and press
ctrl-P (or command-P on Mac)

Completion suggestions for a class member call can also be requested by typing control-\ (command-
\ on Mac). For a given context, it will examine the text under the cursor and list possible valid
completions. One use is to view the list of class methods.

3 Assuming the correct header file is #include-d

Page 5 of 14

a =

17 Unable to resolve identifier coot
T &
ig [Alt-Enter shows hints) argy)
T coot << << f£({3) << endl;
21 cout << <= f({2) << endl;

Figure 9: The editor has highlighted an undefined identifier here (press alt-enter to get details) -
looks like a typo!

3.2 Syntax and identifier checking

The NetBeans editor will display a red stop sign with an exclamation point if it identifies an error
in your code (Fig 9). These flags are an advance warning that the compiler will not be able to
compile the source. The editor can’t catch every possible error, but it does a fairly good job of the
more common ones, which saves time.

3.3 Syntax highlighting

Another thing the editor does to help you in reading files is syntax highlighting. Language keywords
(words with a special meaning such as #include, int, class, etc) are highlighted in a special colour
to make them stand out. Parentheses, square brackets, and curly braces will also highlight in pairs
when you place the cursor over them, to help you identify matching pairs. That feature gets handy
when you have multiple levels of nesting, to make sure you’re matched correctly.

3.4 Auto-indent and auto-complete

Source code readability is helped tremendously by proper indentation to denote nesting of classes,
functions, loops, and conditional statements. The IDE helps you achieve this by automatically
indenting the constructs listed above. It will also automatically close parentheses, and complete
common constructs like #include. You will notice some of this happening as you type and use the
editor. If you happen to find it annoying, you can turn off auto-completion by using the editor tab
under the NetBeans — Preferences menu item.

3.5 Code folding

Sometimes when working on a large file*, there is only a small portion of it that is of interest at a
time. It can make your life easier to hide parts of the file so you can focus on what you’re working
on. In the editor, small boxed minus signs will appear in the left margin next to a function body,
comment, or class definition. If you click, the whole block will fold into a single line (Fig 11; note
the line numbers jump at the fold). Click again, and it comes back (Fig 11).

3.6 Code browser

One of the advantages of using an IDE over a normal text editor is that the IDE has functions
to parse and understand the language you are writing in. As a result, it “knows” about function
prototypes, function bodies, variable declarations, comments, identifiers, etc. It also understands
scope, which is the set of variables/functions/classes visible at a given point in the program. If an

“Note if the file gets really big, convenience and good style would suggest that you split it into multiple files along
some reasonable criteria. For instance, maybe have the methods for just one class in a file, or limit each file to just
a few related functions.

Page 6 of 14

a void readLinesFromFile(=tring filename,int nLines);

11 float £(float x)
{

12
13 T return g(x-1) + 2¥*x;
14
15
16 float g{float vy)
17 {
18 E
19
20
21
22|+
23 return y*y + 3;
24 L}
25
26 int main(int argc,char **argv)
27 3 o
28 cout =< << f({2) << endl;
29
30 return 0;
31 L}
32
Figure 10: Folding - before.
10
11 float £(float x)
12
15
16 float g{float y)
17 @
25
26 int main(int argc,char **argv)
27 {
28 cout << << f(2) << endl;
29
30 return 0;
31 }
i]

Figure 11: Folding - after. Note line numbers jump at the fold and the code appears much more
compact.

identifier is seen within a given scope, the IDE can help you by navigating to the definition if you
control-click on it (command-click on Mac). For instance, for any given variable or function you
can have the IDE jump to its definition.

Another way to access this feature is through the navigator (Fig 12), typically found at bottom
left or in Window — Navigating — Navigator as shown below.

This shows header files (cmath, iostream, fstream), function bodies (f, g, main), namespace
references (std), and function prototypes (readLinesFromFile). Double-clicking on any of them
will take you to the corresponding line in the source file.

3.7 Backwards and forwards browsing

The browser also maintains a history of where you’ve been while clicking through links and following
definitions. This allows you to use a web-browser-like forward /backward command using control-left
and control-right (Windows), or menu item Navigate — Back. For instance, you can control-click
a function name to go to its definition, then use Back to return to where you were previously.

4 Examples

Try typing the following code into your editor (or load it from stringex in the examples folder).
Note the differing colours indicating the language constructs that it recognizes. You should also
see some red marks in the left margin. First, it will indicate some “unable to resolve identifier”

Page 7 of 14

© 0 N o U W N =

e e e
= W N o= O

readLinesFromFile(string filename, int nLines) - Navigator
& cmath
© fifioat x)
@ fstream
© oglfloat y)
i iostream
@ main(int argc, char** argv)
readLinesFromFile(string filename, int nLines)
e std

Figure 12: The navigator lets you jump easily to various definitions within your file or the project.

(" skrepy
2% ® stropy(char*, const char*) char¥*
22 }
23 &
24 NAME v

stpepy, strepy, strncpy -- copy strings —
Output 1

LIBRARY = =
1 Standard C Library (libe, -lc) 1, Run) hello (Run) |

W Hel SYNOPSIS
B ol #inelude <string.h>

char *

%1111 stpepy(char #*sl1, const char #*s2);

Figure 13: Hitting control-\without the function parenthesis brings up the function documentation
and argument info

errors. These can be fixed by using the std namespace (see section 5.3.4). Now place the cursor
at the end of the “str.” line, and use the completion suggestion button to see what options there
are. It should list a number of different methods for the string class.

#include <string>

int main(int argc,char *xargv)

{
if (argc !'= 1)
{
cerr << "Needs one argument (a string)" << endl;
return -1;
}
string str(argvlil);
count << "Length of string is " << str. // this line needs completion
return O;
}

Another example, this time for a function call instead of a class member is shown in Fig 13.

5 Compiling

Compilation is the process of converting a human-readable source code text into a machine-readable
binary object file. Most programs are too large to conveniently fit into a single source file - some may
have thousands, millions, or even tens of millions of lines. Even very simple, single-file programs

Page 8 of 14

T F =) | Default # W ¥ D Ebe— Debug

*rojects - Labl | Filas | Services | Classeﬁ

" [factorial Build configuration
[factorial - ,I'Llsers,fjcassideucuments!TA,fECEE‘i‘i_}(‘

| Important Files - i 1 #include <ics
¥ ﬁ@}%r Build f_{_‘.{]rT1F:]I|{_,]I 2 #include <cmath

B B-E- Q
“Clean & Build

Figure 14: The build toolbar

typically rely on the standard library for functions like input/output: reading from and writing to
the terminal. So, multiple files can be compiled independently, each leaving a list of unresolved
entries which are functions or variables that it does not have a definition for within the file. The
linker then “ties together” all the separate pieces in the object files with libraries. If successful, it
produces a binary executable file that the computer can load and run. This is our goal - to create
a working executable from source code.

5.1 Using NetBeans to compile

A compiler is an extremely complex piece of software to create, debug, and maintain. For this
reason, NetBeans does not provide its own compiler, rather it “knows” how to call out to other
existing compiler systems like LLVM, MinGW, and GCC. The user may specify which toolchain
to use as we did during install (GCC on ECF machines). Such reuse of other components to avoid
“reinventing the wheel” is an important principle in engineering. What NetBeans does is wrap
the extremely powerful back-end compiler tools in a friendly, graphical, easy-to-use interface. The
figure below show how to build a project once it has been imported.

Again reusing popular tried-and-true tools, NetBeans manages its build process using the Make
utility to call the back-end compiler (in this case GCC). Project options and the Makefile take care
of sending the correct flags to the compiler. We will cover Makefiles in greater depth later, but the
brief explanation is that Make is a tool to save time by rebuilding only the parts of a program that
have changed. If a given source file has not changed, then the compiler does not need to be re-run
for it.

The build toolbar shown in fig 14 has the buttons needed to compile the project. Pressing
the “Build” button will cause the compiler to run for all source files that are out of date, thus
(if successful) producing the target program so it can be run. Status output is provided in the
“Output” window which appears by default at the bottom of the screen. The “Clean & Build”
option is a more thorough process which first deletes all the output files and re-builds from scratch.
On a large project, this can be a very time-consuming process however it makes little difference on
the scale of this course. The green “Run” arrow runs the program, building it if necessary due to
a source file change. Command-line options provided to your program, if desired, can be set in the
Run — Set Project Configuration — Customize window.

Note that when you build, the output window shows the commands and options issued to g++
to build the project. You can verify here what exactly the IDE is doing. Also, if you were to type
the same command at the terminal it would also build the project exactly the same way. One of
the most useful things to check for is the -g option, which will be important when debugging.

Lastly, and just for completeness, the drop box labelled “Build configuration” allows the user
to create and name several different configurations: sets of different compiler and run-time options.
Imagine as is common practice that you have two versions with different compile options: one for

Page 9 of 14

maximal speed (a release build), and one to allow debugging (a debug build). This box lets you
flip quickly and easily between two different sets of compile, link, and run-time options to carry
out those two functions without having to re-type them into menus each time. Generally for this
course, we will provide the Makefile so you can just leave this on “Default”.

5.2 Compile-time errors

Unfortunately, it is rare for a program to work correctly on the first try; there will be errors which
can be classified by when they occur: compile-time errors prevent the compiler from producing an
executable, whereas run-time errors or “bugs” permit compilation but produce undesired results
or crashes when the program is run. We will deal with detecting and correcting run-time errors
separately in a discussion of debugging.

A compile-time error occurs when the compiler can not correctly translate the source language
(here C++) to machine code. Informally, a compile-time error occurs when the compiler cannot
“understand” the code you’ve given it due to invalid use of the language or missing information.
The syntax of a language is the set of rules saying what are valid elements (identifiers, punctuation,
etc), and the order in which they can occur. As you will learn, working software code, unlike
written or spoken language, must conform exactly to very strict rules of syntar. Any deviation
from the rules will cause an error because computers are “dumb”: they cannot understand your
intent, context or meaning, instead relying on inflexible rules to translate exactly what you said
rather than what you meant. This can be very frustrating: small typographical errors (spelling,
case, punctuation) that don’t hinder a human’s understanding (and are therefore often overlooked)
completely stump the compiler, causing one or more fatal errors. The NetBeans editor helps with
this by finding and highlighting some errors as you go along, but there are often errors that pop
up only when you try to compile.

It’s also possible that what you’ve done is syntactically correct but refers to identifiers (variables,
functions, classes) that are undefined, or uses the wrong arguments for a function, or does an invalid
type conversion. In this case, the compiler can understand the structure of what you are trying
to do, but it lacks some other information. For instance, you may refer to an undefined variable:
the compiler can see that you're referring to a variable, but doesn’t know where it’s kept or what
type it is. Likewise, it will recognize a function call if you type f(a,b,c), but if it doesn’t have
information on what types of arguments f takes it will fail.

Don’t be discouraged if you receive a huge list of errors. It’s often the case that after a single
syntax error, the compiler gets confused and starts thinking everything is wrong. Just start at the
top and try to fix the errors one or two at a time, reading the error message carefully to try to
understand the cause. Last but not least, the IDE helps you yet again by making it possible to click
on compiler errors to go to the relevant line. Any error with a blue hyperlink permits you to follow
the link into the source editor. Sometimes, the source browsing and completion-hint functions can
help you fix this - or the IDE may offer you a hint if you press alt-enter when over an error.

5.3 Common compile-time errors

To help you get started, here is a list of common compile-time errors that you are likely to encounter:

5.3.1 Undefined symbol

Variables must be declared before being used. If you get an undefined symbol error, it could mean
that you have either forgotton to declare the variable, the variable name is misspelled, or it is

Page 10 of 14

not visible in the current scope. If you're trying to use a symbol from a standard library, see the
sections below on case, header files, and namespaces.

5.3.2 Case

C++ is a case-sensitive language so foo, Foo, and FOO0 are all separate identifiers. Note that it’s
poor practice to use variables that differ only by case. You should choose a capitalization convention
for identifiers (variable, function, class) and stick to it.

5.3.3 Missing header files

To use standard library functions, classes, and objects you must include a header file. The most
common ones you will need are: iostream for IO (input/output); possibly iomanip for formatted
output; string for anything related to the string class; consult documentation for any library
functions you want to use to find out what header(s) are needed.

5.3.4 Namespace problems

If you have included the correct header files and it’s still not finding a symbol (for instance cout),
make sure you have the line using namespace std; near the top of your file after the #include
statements. This will make all symbols in the std (standard library) namespace visible to your
program. An alternative solution is to prefix std:: to all library symbols that you use.

Namespaces are used primarily when creating libraries (such as the standard library). They
support encapsulation, making definitions invisible unless the programmer wishes them to be visible.
It avoids the risk of multiple libraries defining the same symbol in different ways which would be
illegal. Normally when you refer to a symbol (variable, class, function), the compiler searches
all currently-included namespaces to find its definition. If there is no match, it will generate
an undefined symbol error. It is also possible to specify a fully-qualified symbol name such as
std: :cout to specify exactly the namespace (in this case std) to search.

5.3.5 Type mismatch

C++ is a statically-typed language, meaning each variable has a definite type which cannot be
changed “on the fly”. Once defined as a certain type, the variable has that type for the rest of its
life, until “dies” by going out of scope. For convenience, certain conversions are permitted when
unambiguous automatic conversions exist (for instance, you may assign an int value to a variable
of type double). However, most are not. For instance, we cannot assign the character array €2’
to an int even though the intended meaning may seem obvious. Make sure that you are assigning
variables to like types, that you cast the type correctly (more on this later in the course), or that
an appropriate conversion is called’. If you do not, you will see an error message like in Fig 15.

6 Running

Following successful compilation, you will want to run your program and test its functionality. This
too can be done from within NetBeans. The IDE provides you a few handy ways of providing input
to your program just like you would from the command line: terminal input (display text to screen
& read from keyboard), command-line arguments, and environment variables.

5For the char[] example, atoi would be one way to do it.

Page 11 of 14

31 char j= :

| cout << f£(2) << endl;

34 cout =< << f(2) << endl;

35

36 return 0; |
37 } 1

Output - fgx (Build, Run)

g++ -Wall -g -00 fgx.cpp -o fgx

fgx.cpp: In function 'int main(int, char#**)':
[?D fgx.cpp:31l: error: invalid conversion from 'const char#' to "char’
@ fogx.cpp:3l: warning: unused variable "j'

make: *** [fgx] Error 1

Figure 15: A type mismatch error. Note the blue error message allowing you to hyperlink to the
source of the error. You will learn the (significant) difference between double and single quotes in
CH++.

Options controlling how the program is run are found under Run — Set Project Configuration
— Customize menu item, which brings up the dialog shown in Fig 16 (click on Run at left). For
each project configuration, you can set command-line arguments and environment variables (more
on these in the sections below). This way, you can have multiple test cases (configurations) and
switch between them easily without manually having to enter command-line arguments every time
you run, or change menu options when switching between cases.

(NN &) Project Properties - name
Categories:
© General Configuration: | Default (active) |3] (" Manage Configurations...)
@ Build
o Make Ceneral
© Packaging Run Command "S{OUTPUT_PATHY}" = D
“ Run Directory D
@ Debug Environment D
@ Related P_mjecls Build First EI
© Code Assistance Console Type Internal Terminal -
External Terminal Type Default =

Figure 16: Run options dialog

6.1 Terminal input

The simplest case for reading and writing from the terminal is demonstrated in the example called
name, which asks the user for their name and prints out a welcome message using the name given.

When you run this program, it should display a prompt message asking the user for their name.
At this point, the program pauses (blocks) waiting for the user to respond. You can click in the
Output pane and type on the keyboard to interact with the program as shown in Fig 18. When
you type your name followed by Enter, the program will resume.

6.2 Command-line arguments

Another way of interacting with a program is via its command-line arguments. Arguments are
additional information provided after the program name on the command line. The shell commands

Page 12 of 14

© 0 N e U W N

e
w N = O

#include <iostream>

using namespace std;

int main(int argc,char **argv)

{

string name;
cout << "Please type your name: ";
cin >> name;

cout << "Hello, " << name << ", and welcome to ECE244" << endl;
return O;

Figure 17: name.cpp program to prompt user for input and use the input to display a message

i]
string name;
cout << B

cin >> name;

cout << << name << << endl;
return 0;

}

Watches | Variables Call Stack | Breakpoints | Sessions |Dutput | Memory | Expression Evaluation

a

3

| name (Build, Debug) name (Debug)]

Please type your name: I

Figure 18: Interacting with the program via terminal

you have already learned often make use of arguments to tell the program what to do. For instance,
when copying files you would type

>

cp foo bar

This invokes the program cp with two arguments: foo, the source file; and bar, the destination

file. Your program can also read its command-line arguments. They are passed to the main routine
as two function arguments: an int and a char** (pointer to array of charx). These arguments
are conventionally named argc (argument count plus one’) and argv (argument vector containing
all the arguments). While the notion of pointer-to-array-of-pointers may seem complex, you can
think of each of argv[0] through argv[argc-1] as a char* null-terminated character array (ie.

a

C-style string). The first value, argv[0], is always the program name as input at the terminal.

The argc-1 arguments given (if any) start at argv[1].

6

.3 Exercises
1. Build and run name, providing input and seeing how the program responds

2. Build args; run it from both the NetBeans terminal and from the command-line. Try pro-
viding different argument values to see how it responds.

5This is always argument count plus one, because it marks the size of argv which always starts with the program

path, hence it always has at least one element. The arguments are then appended, so the length is number-of-
arguments-plus-one.

Page 13 of 14

© 0 N O U W N

=
=]

#include <iostream>
using namespace std;

int main(int argc,char **argv)

{
cout << "There are " << argc << " arguments given" << endl;
for(int i=0;i<argc;++i)
cout << "argv[" << i << "] = \"" << argv[i] << "’ << endl;
return O;
}
Figure 19: Source code showing use of command-line arguments
86 Project Properties — args
Categories:
© General Configuration: | Default (active) l:] (" Manage Configurations...)
¥ @ Build
o Make v General
@ Packaging Run Command "${OUTPUT_PATH}" argl arg2 blah = D
. Run Directory D
“ Debug Environment D
< Related Projects Build First E
P © (Code Assistance .
Console Type Internal Terminal =
External Terminal Type Default =

Figure 20: Setting command-line arguments by appending to the “Run command” field

Watches | Output ©

| Makefile (Make) clean © Makefile (Make) © args (Build, Run) © args (Run) ™ |
D[> There are 4 arguments given
@ argv[0] = "/Users/jcassidy/src/ECE244_2012/tutorial/args/args"
argv[l] = "argl"”
argv[2] = "arg2"
argv[3] = "blah"

RUN SUCCESSFUL (total time: 80ms)

Figure 21: Program output when provided with command-line arguments as shown in Fig 20

Page 14 of 14

	Introduction
	Your first project
	Importing an existing project
	Example

	Creating a new project
	Working with multiple projects

	Using the NetBeans editor
	Completion Hints
	Syntax and identifier checking
	Syntax highlighting
	Auto-indent and auto-complete
	Code folding
	Code browser
	Backwards and forwards browsing

	Examples
	Compiling
	Using NetBeans to compile
	Compile-time errors
	Common compile-time errors
	Undefined symbol
	Case
	Missing header files
	Namespace problems
	Type mismatch

	Running
	Terminal input
	Command-line arguments
	Exercises

